Inorganic and Physics Chemistry Department

Fundamentals of quantitative calculations in pharmacy

Fundamentals of quantitative
 calculations in pharmacy.
 Calculations by chemical formulas

For specialty 226 Pharmacy, industrial pharmacy

The main questions

1. Structural particles of matter: atom, molecule, ion.
2. The amount of substance.
3. Basic laws of chemistry, formulas and calculations.
4. Examples of solution of exercise.

Structural particles of maitter

Chemistry is the science of the structure, properties, and transformations of substances.

Substance - a set of particles with the same properties.

Simple substances consist of one type of atoms.
C - graphite, consisting of atoms of C;
H_{2} - hydrogen, the molecule consists of two atoms of H .
P_{4} - phosphorus, the molecule consists of four atoms of P.
Fe - iron, consisting of Fe atoms.

Structural particles of matter are atoms, molecules, ions.
Chemical formula - conditional record of the composition of a substance using the symbols of chemical elements and indices.

The index is the number of atoms of a given chemical element in the formulas of substances.
Complex substances consist of atoms of
various chemical

Vallence of aitoms of some elements

Chemical element	Valence	Examples of compound formulas
Constant valence		
$\mathrm{H}, \mathrm{Li}, \mathrm{Na}, \mathrm{K}$	I	$\mathrm{H}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}$
$\mathrm{O}, \mathrm{Ca}, \mathrm{Zn}$	II	$\mathrm{CaO}, \mathrm{ZnO}$
Al	III	$\mathrm{Al}_{2} \mathrm{O}_{3}$

Variable valence

| Cu | \| i |l | $\mathrm{Cu}_{2} \mathrm{O}, \mathrm{CuO}$ |
| :---: | :---: | :---: |
| $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$ | II ill | $\mathrm{FeO}, \mathrm{Fe}_{2} \mathrm{O}_{3}$ |
| $\mathrm{C}, \mathrm{Sn}, \mathrm{Pb}$ | IIIIV | $\mathrm{CO}, \mathrm{CO}_{2}$ |
| P | III iV | $\mathrm{PH}_{3}, \mathrm{P}_{2} \mathrm{O}_{5}$ |
| Cr | II, III i IV | $\mathrm{CrO}, \mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{CrO}_{3}$ |
| As S | II, IV i vi | $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{SO}_{3}$ |

PERIODIC TABLE OF THE ELEMENTS

$\begin{array}{ccc} 47 & \text { Ad"Fs. } & \mathrm{Ag} \\ \text { sluver } & 107.868 \end{array}$	$\begin{array}{lll} 48 & & \mathrm{Cd} \\ \text { caomum } & & \end{array}$	$\begin{aligned} & \ln _{5 \text { 5spo' }}{ }^{49} 4 \\ & 114.82 \end{aligned}$	$\begin{array}{ll} S_{555 p^{2}} & 50 \\ \text { TN } \end{array}$	
$\begin{array}{lrr} \text { Cs } & 55 \\ \text { 132.9054 } & \text { cesum } \end{array}$	$\begin{aligned} & \mathrm{Ba} \quad 56 \\ & { }_{137.3 \mathrm{~s}^{2}} \quad 56 \end{aligned}$			
79 ntes Au	80	TI 81	Pb 82	$\mathrm{Bi} \quad 83$

GOLD 196.9665	200.5	204.37 TH	207.2 LEAD	208.98	
$\begin{array}{\|lll} \hline \text { Fr } & & 87 \\ & 7 s^{\prime} & \\ \hline \end{array}$	$7 \mathrm{~s}^{2}$	$89 \underset{6 d^{\prime} 7 s^{2}}{* *} \mathrm{AC}$	$104 \underset{ }{6 d^{2} 7 s^{2}} \mathbf{R f}$		0
FRAN	RAD	TINUM 227,0	HERFORDIUM[DUBNIUM]
$111 \quad \mathrm{Rg}$	112 $6 d^{107} \mathrm{~s}^{2}$	Nh 113 $7 s^{2} 7 p^{\prime}$ $[286]$ NHONIUM	F\| 114 $7 s^{2} 7 p^{2}$ $[289]$ FLEROVIUM	$\|$MC 115 $7 \mathrm{~s}^{2} 7 p^{3}$ $[289]$ moscovium	
	COPERNICIUM [285]				

VI	VII	VIII	
	H $1 \mathrm{~s}^{\prime}$ 1.0079 HYDROGEN	He 2 $1 \mathrm{~s}^{2}$ 4.00260 HELIUM	
0 $2 s^{2} 2 p^{4}$ 15.999 OXYGEN	F 9 $2 s^{2} 2 p^{5}$ 18.9994 FLUORINE	$\begin{array}{\|lll} \hline \text { Ne } & & 10 \\ & 2 s^{2} 2 p^{6} & \\ 20.179 & \text { NEON } \end{array}$	
S 32.06 $3 s^{2} 3 p^{4}$ SULFUR	Cl 17 35.453 $3 s^{2} 3 p^{5}$ CHLORINE	18 $3 s^{2} 3 p^{6}$ 39.948 ARGON	Electronic configuration Atomic name Atomic weight
24 $3 d^{5} 4 s^{\prime}$	$\begin{array}{ll} 25 & \\ & 3 d^{5} 4 \mathrm{~s}^{2} \\ \text { MANGANESE } & \mathrm{Mn} \\ \hline \text { 24.938 } \end{array}$	$\begin{array}{\|rrr\|} \hline 26 & & \text { Fe } \\ & 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2} & \\ \text { IRON } & 55.847 \\ \hline \end{array}$	
Se 34 $4 s^{2} 4 p^{4}$ 78.96 selenium	Br^{2} $3 \mathrm{~s}^{2} 4 \mathrm{p}^{5}$ 79.904 BROMINE	Kr $4 s^{2} 45^{6}$ 83.80 KRYPTON	
	43 TC $4 d^{s} 55^{2}$ TECHNETIUM [98]	$\begin{array}{\|ccc\|} \hline 44 & & \mathrm{Ru} \\ & 4 d^{\prime} 5 s^{\prime} & \\ \text { RUTHENIUM } & 101.07 \end{array}$	
	53 126.9045 IODINE	$\begin{array}{\|lrr} \hline \text { Xe } & & 54 \\ & 5 s^{2} 55^{6} & \\ 131.30 & \text { XENON } \end{array}$	
74		$\begin{array}{\|lll\|} \hline 76 & & \mathrm{OS} \\ & 5 d^{6} 6 \mathrm{~s}^{2} & \\ \text { OSMIUM } & \mathbf{1 9 0 . 2} \\ \hline \end{array}$	
PO 84 6s $^{2} 6 p^{4}$ $[209]$ POLONIUM	At 85 $6 s^{2} 6 p^{5}$ $[210]$ ASTATINE	RIn 86 $6 s^{2} 6 p^{6}$ $[222]$ RADON	[] mass number of the longest-liveed isotope
$\begin{array}{\|lll} \hline 106 & & \mathrm{Sg} \\ & 6 d^{\prime} 7 \mathrm{~T}^{2} & \\ \text { SEABORGIUM } & \text { [263] } \\ \hline \end{array}$	$\begin{array}{\|ccc} 107 & & \text { Bh } \\ & 6 d^{2} 7 \mathrm{~s}^{2} & \\ \text { BOHRIUM } & {[261]} \\ \hline \end{array}$	$\begin{array}{\|ccc\|} \hline 108 & & \mathrm{HS} \\ & 6 d^{6} 7 \mathrm{~s}^{2} & \\ \text { HASSIUM } & {[265]} \\ \hline \end{array}$	109 Mt 110 6d 6d $7 \mathrm{~d}^{8} 7 \mathrm{~s}^{2}$ MEITNERIUM [266] DARMSTADTIUM[281]
LV 116 $7 s^{2} 7 p^{4}$ [293] LIVERMORIUM	TS 117 $7 s^{2} 7 p^{5}$ $[294]$ TENNESSINE	$\|$118 $[294]$ $7 s^{2} \mathrm{Op}^{6}$ OGANESSON	

*Lanthanoid series

**Actinoid series

1. $\mathrm{H}^{\prime} \times{ }^{\prime}$

 2. $\mathrm{H}_{1} \mathrm{Cl}_{1} \quad$ 2. $\mathrm{S}_{2} \mathrm{O}_{6}$
 2. $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{2}$
 3. HCl
 3. SO_{3}
 3. FeSO_{4}

Structural particles of matter

Chemical formulas of complex substances

CO_{2} - carbon (IV) oxide - one C atom and two O atoms;
$\mathrm{H}_{2} \mathrm{SO}_{4}$ - sulphuric acid - two H atoms, one S atom and four O atoms;
$\mathrm{Fe}(\mathrm{OH})_{2}$ - iron (II) hydroxide - one Fe atom, two O atoms, two H atoms;
$\mathrm{CuSO}_{4}-\mathrm{Copper}$ (II) sulphate is one Cu atom, one S atom, and four O atoms.

Types of chemical formulas

Formula
The simplest

Rational

Empirical formula

Structural

Electronic

Description

the ratio of chemical elements $\mathrm{H}_{2} \mathrm{O}$
CH
NaOH
$\mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
the simplest
true
relative position of atoms in a molecule by their of valence
schematic formation of common electronic pairs (chemical bonds)

Examples
groups of atoms characteristic of classes of chemical compounds

H H
$\mathrm{H}: \mathrm{C}: \mathrm{C}: \mathrm{O}: \mathrm{H}$
$\ddot{H} \ddot{H}$

Coefficient - a number before the chemical formula, which indicates the number of atoms, molecules, a given substance or individual ions, atoms
20 - two separate Oxygen atoms;
$2 \mathrm{O}_{2}$ - two molecules of Oxygen;
$4 \mathrm{~K}^{+}$- four Potassium cations;
$2 \mathrm{CuSO}_{4}$ - two molecules of copper (II) sulphate
$\mathrm{H}_{2} \mathrm{SO}_{4}: 2(\mathrm{H}), 1(\mathrm{~S}), 4(\mathrm{O})$;
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4}: 2(\mathrm{~N}), 8(\mathrm{H}), 2(\mathrm{C}), 4(\mathrm{O})$.
$\mathrm{Ba}(\mathrm{OH})_{2}:(\mathrm{Ba}), 2(\mathrm{O}), 2(\mathrm{H}) ;$

Atomic unit of mass is $1 / 12$ of the mass of the Carbon isotope ${ }^{12} \mathrm{C} 1.660 \cdot 10^{-27} \mathrm{~kg}$.

Relative atomic mass (Ar) - a value that shows how many times the mass of the atom of this element is greater than the atomic unit of mass:

$$
A_{r}(\mathrm{H})=\frac{\mathrm{m}(\mathrm{H})}{1 / 12 \mathrm{~m}\left({ }_{6}^{12} \mathrm{C}\right)}=\frac{1.674 \times 10^{-27} \mathrm{~kg}}{1.660 \times 10^{-27} \mathrm{~kg}}=1.008
$$

The values of A_{r} are given in the Periodic Table
Relative molecular weight (Mr) is a number that indicates how many times the mass of a molecule of a given substance is greater than $1 / 12$ of the mass of a carbon atom. Numerically equal to the molar mass.

PERIODIC TABLE OF THE ELEMENTS

$\begin{array}{ccc} 47 & \text { Ad"Fs. } & \mathrm{Ag} \\ \text { sluver } & 107.868 \end{array}$	$\begin{array}{lll} 48 & & \mathrm{Cd} \\ \text { caomum } & & \end{array}$	$\begin{aligned} & \ln _{5 \text { 5spo' }}{ }^{49} 4 \\ & 114.82 \end{aligned}$	$\begin{array}{ll} S_{555 p^{2}} & 50 \\ \text { TN } \end{array}$	
$\begin{array}{lrr} \text { Cs } & 55 \\ \text { 132.9054 } & \text { cesum } \end{array}$	$\begin{aligned} & \mathrm{Ba} \quad 56 \\ & { }_{137.3 \mathrm{~s}^{2}} \quad 56 \end{aligned}$			
79 ntes Au	80	TI 81	Pb 82	$\mathrm{Bi} \quad 83$

GOLD 196.9665	200.5	204.37 TH	207.2 LEAD	208.98	
$\begin{array}{\|lll} \hline \text { Fr } & & 87 \\ & 7 s^{\prime} & \\ \hline \end{array}$	$7 \mathrm{~s}^{2}$	$89 \underset{6 d^{\prime} 7 s^{2}}{* *} \mathrm{AC}$	$104 \underset{ }{6 d^{2} 7 s^{2}} \mathbf{R f}$		0
FRAN	RAD	TINUM 227,0	HERFORDIUM[DUBNIUM]
$111 \quad \mathrm{Rg}$	112 $6 d^{107} \mathrm{~s}^{2}$	Nh 113 $7 s^{2} 7 p^{\prime}$ $[286]$ NHONIUM	F\| 114 $7 s^{2} 7 p^{2}$ $[289]$ FLEROVIUM	$\|$MC 115 $7 \mathrm{~s}^{2} 7 p^{3}$ $[289]$ moscovium	
	COPERNICIUM [285]				

VI	VII	VIII	
	H $1 \mathrm{~s}^{\prime}$ 1.0079 HYDROGEN	He 2 $1 \mathrm{~s}^{2}$ 4.00260 HELIUM	
0 $2 s^{2} 2 p^{4}$ 15.999 OXYGEN	F 9 $2 s^{2} 2 p^{5}$ 18.9994 FLUORINE	$\begin{array}{\|lll} \hline \text { Ne } & & 10 \\ & 2 s^{2} 2 p^{6} & \\ 20.179 & \text { NEON } \end{array}$	
S 32.06 $3 s^{2} 3 p^{4}$ SULFUR	Cl 17 35.453 $3 s^{2} 3 p^{5}$ CHLORINE	18 $3 s^{2} 3 p^{6}$ 39.948 ARGON	Electronic configuration Atomic name Atomic weight
24 $3 d^{5} 4 s^{\prime}$	$\begin{array}{ll} 25 & \\ & 3 d^{5} 4 \mathrm{~s}^{2} \\ \text { MANGANESE } & \mathrm{Mn} \\ \hline \text { 24.938 } \end{array}$	$\begin{array}{\|rrr\|} \hline 26 & & \text { Fe } \\ & 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2} & \\ \text { IRON } & 55.847 \\ \hline \end{array}$	
Se 34 $4 s^{2} 4 p^{4}$ 78.96 selenium	Br^{2} $3 \mathrm{~s}^{2} 4 \mathrm{p}^{5}$ 79.904 BROMINE	Kr $4 s^{2} 45^{6}$ 83.80 KRYPTON	
	43 TC $4 d^{s} 55^{2}$ TECHNETIUM [98]	$\begin{array}{\|ccc\|} \hline 44 & & \mathrm{Ru} \\ & 4 d^{\prime} 5 s^{\prime} & \\ \text { RUTHENIUM } & 101.07 \end{array}$	
	53 126.9045 IODINE	$\begin{array}{\|lrr} \hline \text { Xe } & & 54 \\ & 5 s^{2} 55^{6} & \\ 131.30 & \text { XENON } \end{array}$	
74		$\begin{array}{\|lll\|} \hline 76 & & \mathrm{OS} \\ & 5 d^{6} 6 \mathrm{~s}^{2} & \\ \text { OSMIUM } & \mathbf{1 9 0 . 2} \\ \hline \end{array}$	
PO 84 6s $^{2} 6 p^{4}$ $[209]$ POLONIUM	At 85 $6 s^{2} 6 p^{5}$ $[210]$ ASTATINE	RIn 86 $6 s^{2} 6 p^{6}$ $[222]$ RADON	[] mass number of the longest-liveed isotope
$\begin{array}{\|lll} \hline 106 & & \mathrm{Sg} \\ & 6 d^{\prime} 7 \mathrm{~T}^{2} & \\ \text { SEABORGIUM } & \text { [263] } \\ \hline \end{array}$	$\begin{array}{\|ccc} 107 & & \text { Bh } \\ & 6 d^{2} 7 \mathrm{~s}^{2} & \\ \text { BOHRIUM } & {[261]} \\ \hline \end{array}$	$\begin{array}{\|ccc\|} \hline 108 & & \mathrm{HS} \\ & 6 d^{6} 7 \mathrm{~s}^{2} & \\ \text { HASSIUM } & {[265]} \\ \hline \end{array}$	109 Mt 110 6d 6d $7 \mathrm{~d}^{8} 7 \mathrm{~s}^{2}$ MEITNERIUM [266] DARMSTADTIUM[281]
LV 116 $7 s^{2} 7 p^{4}$ [293] LIVERMORIUM	TS 117 $7 s^{2} 7 p^{5}$ $[294]$ TENNESSINE	$\|$118 $[294]$ $7 s^{2} \mathrm{Op}^{6}$ OGANESSON	

*Lanthanoid series

**Actinoid series

The amount of maitter of structural particles

The relative molecular mass of a compound is the sum of the relative atomic masses of the elements that make up this compound, taking into account their number.

$$
\begin{aligned}
\mathrm{M}_{r}\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right) & =3 \mathrm{~A}_{r}(\mathrm{H})+\mathrm{A}_{r}(\mathrm{P})+4 \mathrm{~A}_{r}(\mathrm{O})= \\
& =3 \times 1+31+4 \times 16=98
\end{aligned}
$$

$$
\mathrm{M}_{r}\left[\left(\mathrm{Ca}(\mathrm{OH})_{2}\right]=\mathrm{A}_{r}(\mathrm{Ca})+2 \mathrm{~A}_{r}(\mathrm{O})+2 \mathrm{~A}_{r}(\mathrm{H})=\right.
$$

$$
=40+2 \times 16+2 \times 1=74
$$

$$
\mathrm{M}_{r}\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]=2 \mathrm{~A}_{r}(\mathrm{~N})+8 \mathrm{~A}_{r}(\mathrm{H})+\mathrm{A}_{r}(\mathrm{~S})+4 \mathrm{~A}_{r}(\mathrm{O})=
$$

$$
=2 \times 14+8 \times 1+32+4 \times 16=132
$$

$$
\mathrm{M}_{r}\left(\mathrm{~K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}\right)=4 \mathrm{~A}_{r}(\mathrm{~K})+\mathrm{A}_{r}(\mathrm{Fe})+6 \mathrm{~A}_{r}(\mathrm{C})+6 \mathrm{~A}_{r}(\mathrm{~N})=
$$

$$
=4 \times 39+56+6 \times 12+6 \times 14=368
$$

The amount of maitter of structural particles

Avogadro's number $\left(6.02 \cdot 10^{23}\right)$ - the number of atoms contained in 12 g of Carbon ${ }^{12} \mathrm{C}$, calculated by dividing 12 g by the mass of one carbon atom ($1.993 \times 10^{-23} \mathrm{~g}$):

$$
N_{A}=\frac{12}{1.993 \times 10^{-23}}=6.02 \times 10^{23} \frac{1}{\mathrm{~mol}}\left(\mathrm{or} \mathrm{~mol}^{-1}\right)
$$

Quantity of matter - the ratio of the number of structural units of matter (atoms, molecules, etc.) to the Avogadro constant:

$$
v=\frac{\mathrm{N}}{\mathrm{~N}_{\mathrm{A}}}
$$

v - amount of substance, mol;
N - the number of structural units of matter.

The amount of substance of the element in a certain amount of the substance of the compound:

$$
V_{\text {(element) }}=n_{\text {(element) }} \cdot v_{\text {(substance) }}
$$

n - index in the chemical formula.
$\mathrm{Mol}(v)$ - unit of substance: contains as many structural units as atoms contained in 12 g of Carbon ${ }^{12} \mathrm{C}$

1 mole of Hydrogen contains 6.02×10^{23} molecules H_{2};
1 mol of hydrogen atoms contains 6.02×10^{23} atoms of H ;
1 mol of water contains 6.02×10^{23} molecules of $\mathrm{H}_{2} \mathrm{O}$ Molar mass (M) - mass of 1 mol of substance : $M=\frac{m}{v}$ Units of measurement - g/mol or $\mathrm{kg} / \mathrm{mol}$.
the ratio of the mass of the element to the corresponding mass of the compound:

$$
\omega(E)=\frac{m(E)}{m(\text { compound })}
$$

\checkmark the mass of the element and the compound must be in the same dimension (g or kg)
\checkmark expressed in\% or fractions of 1
Based on the compound formula:

$$
\omega(E)=\frac{n(E) \cdot A_{r}(E)}{M_{r}(\text { compound })}
$$

the mixture - a system consisting of two or more substances (components of a mixture).

Homogeneous the mixture - solution (gaseous, liquid or solid).

Heterogeneous - mechanical the mixture.

Any of the mixture can be divided into components by physical methods; the components of the mixture do not change the properties.
the ratio of the mass of the element to the corresponding mass of the mixture:

$$
\omega(E)=\frac{m(E)}{m(\text { mixture })}
$$

\checkmark expressed in\% or fractions of 1
\checkmark the mass of the element and the mixture is denoted in same dimension (g or kg)
law of constant composition states that a given chemical compound always contains its component elements in fixed ratio (by mass) and does not depend on its source and method of preparation.
Obtaining CO_{2} :

$$
\begin{gathered}
\mathrm{CaCO}_{3}=\mathrm{CO}_{2}+\mathrm{CaO} \\
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{CO}_{2}+2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{CH}_{4}+2 \mathrm{O}_{2}=\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
2 \mathrm{CO}+\mathrm{O}_{2}=2 \mathrm{CO}_{2}
\end{gathered}
$$

It is valid only for molecular compounds - daltonides.
Daltonides are substances of constant composition - simple formulas with integer indices: $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HCl}, \mathrm{CO}_{2}$.

The law of multiple proportions(1803)

Law of multiple proportions, statement that when two elements combine with each other to form more than one compound, the mass of one element that combine with a fixed mass of the other are in a ratio of small whole numbers

The composition of nitrogen oxides (as a percent by mass):

Formula	$\mathbf{N}_{\mathbf{2}} \mathbf{O}$	$\mathbf{N O}$	$\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}}$	$\mathbf{N O}_{\mathbf{2}}$	$\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{5}}$
$\mathbf{N}, \boldsymbol{\%}$	63.7	46.7	36.8	30.4	25.9
$\mathbf{0}, \boldsymbol{\%}$	36.3	53.3	63.2	69.6	74.1
Ratio $\mathbf{0} / \mathbf{N}$	0.57	1.14	1.71	2.28	2.85
Valence \mathbf{N}	$\mathbf{1}$	2	3	4	4

$\mathrm{CaCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{CaCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}, \mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
water masses are rated to as water masses are rated to as 1:2:4:6

Avogadro's law and its consequences (1811)

the same volumes of gases under the same conditions contain the same number of molecules

The first consequence:
1 mole of any gas under the same conditions will occupy the same volume - the molar volume V_{m} :

$$
\mathrm{V}_{\mathrm{m}}=\frac{\mathrm{M}}{\rho}=\frac{\mathrm{V}}{v} \quad\left[\mathrm{~V}_{\mathrm{m}}\right]=\mathrm{L} / \mathrm{mol}
$$

Under normal conditions $\mathrm{Vm}=22.4 \mathrm{~L} / \mathrm{mol}\left(\mathrm{or} \mathrm{m}^{3} / \mathrm{mol}\right)$
Normal conditions $-\mathrm{T}=273 \mathrm{~K}\left(0^{\circ} \mathrm{C}\right)$ $\mathrm{p}=101.3 \mathrm{kPa}$ (1 atm . or 760 millimeters of mercury).

The second consequence :

the ratio of the masses of the same volumes of different gases under the same conditions is the density of one gas by another:

$$
\begin{gathered}
\mathrm{D}=\frac{\mathrm{m}}{\mathrm{~m}_{1}}=\frac{\mathrm{M}}{\mathrm{M}_{1}} \text {, therefore } \\
\mathrm{D}\left(\text { Xgas } / \mathrm{MH}_{2}\right)=\frac{\mathrm{M}_{\text {gas }}}{2}
\end{gathered} \quad \mathrm{D}(\text { Xgas } / \text { air })=\frac{M_{\text {gas }}}{29} .
$$

For conditions other than normal

Clapeyron-Mendeleev's law

$$
\mathrm{pV}=\frac{\mathrm{m}}{\mathrm{M}} \mathrm{RT}
$$

where: ppressure, Pa; V- volume, m^{3};
m - mass, kg;
combined gas law
Boyle-Marriott and Gay-Lussac

M - molar mass, kg/mol;
R - universal gas table, $8.314 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$;
T-temperature, K .

Avogadro's law and its consequences

The volume fraction of the component in the gas mixture:

$$
\varphi_{(\text {component })}=\frac{\mathrm{V}_{(\text {component })}}{\mathrm{V}_{(\text {mixture })}}
$$

\checkmark the volumes of the components and mixtures are denoted in the same dimension (L or mL)
\checkmark expressed in \% or fractions of 1
The average molar mass of the gas mixture $(\overline{\mathrm{M}})$:

$$
\overline{\mathrm{M}}=\sum \mathrm{M}_{\mathrm{i}} \varphi_{\mathrm{i}}=\mathrm{M}_{1} \varphi_{1}+\mathrm{M}_{2} \varphi_{2}+\cdots+\mathrm{M}_{\mathrm{n}} \varphi_{\mathrm{n}}
$$

M_{1}, M_{2}, M_{n} - molar masses of gases;
$\varphi_{1}, \varphi_{2}, \varphi_{\mathrm{n}}$ - volume fractions of gases;
n - number of components.

Avogadro's law and its consequences

Average molar mass of air($\overline{\mathrm{M}})$

1) Oxigen (21\%) and Nitrogen (79\%):

$$
\overline{\mathrm{M}}_{\mathrm{air}}=\mathrm{M}_{\mathrm{O}_{2}} \varphi_{\mathrm{O}_{2}}+\mathrm{M}_{\mathrm{N}_{2}} \varphi_{\mathrm{N}_{2}}
$$

$$
\overline{\mathrm{M}}_{\mathrm{air}}=32 \times 0.21+28 \times 0.79=28.82 \approx 29 \frac{\mathrm{~g}}{\mathrm{~mol}}
$$

Basic formulas for calculations

$$
v_{\text {(element) }}=n_{\text {(element) }} \cdot v_{\text {(compound) }} \quad n_{A}: n_{B}: \ldots: n_{Z}=v_{\mathrm{A}}: v_{\mathrm{B}}: \ldots: v_{\mathrm{Z}}
$$

$$
\begin{array}{lll}
v=\frac{\mathrm{N}}{\mathrm{~N}_{\mathrm{A}}} & v=\frac{\mathrm{m}}{\mathrm{M}} & v=\frac{\mathrm{V}}{\mathrm{~V}_{\mathrm{m}}} \\
& \frac{\mathrm{~N}}{\mathrm{~N}_{\mathrm{A}}}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{\mathrm{V}}{\mathrm{~V}_{\mathrm{m}}} &
\end{array}
$$

$$
\omega(E)=\frac{n(E) \cdot A_{r}(E)}{M_{r}(\text { compound })}
$$

$\omega(E)=\frac{m(E)}{m(\text { mixture })}$

$$
\varphi_{\text {(volume fraction of component })}=\frac{\mathrm{V}_{\text {(component })}}{\mathrm{V}_{(\text {mixture })}}
$$

Maverage molar mass $=\sum \mathrm{M}_{\mathrm{i}} \varphi_{\mathrm{i}}=\mathrm{M}_{1} \varphi_{1}+\mathrm{M}_{2} \varphi_{2}+\cdots+\mathrm{M}_{\mathrm{n}} \varphi_{\mathrm{n}} \mathrm{n}$

Examples of solution of the tasks

1. For water mass of 9 g , calculate : a) amount of substance; b) the number of molecules; c) volume.

$$
\begin{aligned}
& \text { Given: } \\
& \text { Solution: } \\
& \begin{array}{c|}
m\left(\mathrm{H}_{2} \mathrm{O}\right)=9 r \\
\hline v\left(\mathrm{H}_{2} \mathrm{O}\right)-?
\end{array} \quad v=\frac{m}{M} \quad v=\frac{N}{\mathrm{~N}_{\mathrm{A}}} \quad v=\frac{\mathrm{V}}{\mathrm{~V}_{\mathrm{m}}} \\
& N\left(\mathrm{H}_{2} \mathrm{O}\right) \text { - ? } \\
& V\left(\mathrm{H}_{2} \mathrm{O}\right) \text { - ? } \\
& \mathrm{N}\left(\mathrm{H}_{2} \mathrm{O}\right)=v\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot \mathrm{N}_{\mathrm{A}}=0.5 \mathrm{~mol} \times 6.02 \cdot 10^{23}= \\
& =3.01 \times 10^{23} \text { (molecules) } \\
& \mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)=v\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot \mathrm{V}_{\mathrm{m}}=0.5 \mathrm{~mol} \times 22.4 \mathrm{~L} / \mathrm{mol}= \\
& =11.2 \mathrm{~L}
\end{aligned}
$$

Answer: a) 0.5 mol ; b) 3.01×10^{23} (molecules); c) 11.2 L .

Examples of solution of the tasks

2. Calculate the amount of calcium orthophosphate containing 1.6 mol of Oxygen.

Given :
$v(\mathrm{O})=1.6 \mathrm{~mol}$
$4\left(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right)-$?

Solution:

$v($ element $)=n($ element $) \cdot v($ compound $)$
$v($ compound $)=\frac{\nu(\text { element })}{n \text { (element })}$

$$
v\left(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right)=\frac{v(0)}{\mathrm{n}(\mathrm{O})}=\frac{1.6 \mathrm{~mol}}{8}=0.2 \mathrm{~mol}
$$

Answer : 0.2 mol.

Examples of solution of the tasks

3.Determine the formula of the compound containing 0.14 g of Iron and 0.06 g of Oxygen.
Given :
Solution:
$\mathrm{m}(\mathrm{Fe})=0.14 \mathrm{~g}$ $\mathrm{m}(\mathrm{O})=0.06 \mathrm{~g}$
$\mathrm{Fe}_{x} \mathrm{O}_{y}-$?

$$
\begin{aligned}
& v(\mathrm{Fe})=\frac{\mathrm{m}(\mathrm{Fe})}{\mathrm{M}(\mathrm{Fe})}=\frac{0.14 \mathrm{~g}}{56 \mathrm{~mol}}=0.0025 \mathrm{~mol} \\
& v(0)=\frac{\mathrm{m}(0)}{\mathrm{M}(0)}=\frac{0.06 \mathrm{~g}}{16 \mathrm{~mol}}=0.00375 \mathrm{~mol} \\
& \mathrm{n}(\mathrm{Fe}): \mathrm{n}(0)=v(\mathrm{Fe}): v(0) \\
& \mathrm{n}(\mathrm{Fe}): \mathrm{n}(0)=0.0025: 0.00375 \\
& \mathrm{n}(\mathrm{Fe}): \mathrm{n}(0)=1: 1.5=\text { ratio } 2: 3
\end{aligned}
$$

Answer : $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
4. At roasting 2.66 g of unknown substance A gave 784 mL of carbon (IV) oxide and 1568 mL of sulphur (IV) oxide.
Determine the gross formula of substance A.

Given :
$\mathrm{m}(\mathrm{A})=2.66 \mathrm{~g}$
$\mathrm{V}\left(\mathrm{CO}_{2}\right)=784 \mathrm{~mL}$
$\mathrm{V}\left(\mathrm{SO}_{2}\right)=1568 \mathrm{~mL}$
$\mathrm{C}_{x} \mathrm{~S}_{\mathrm{y}} \mathrm{O}_{z}$ - ?

Solution:

$$
\mathrm{m}(\mathrm{C})=v(\mathrm{C}) \cdot \mathrm{M}(\mathrm{C})=0.035 \mathrm{~mol} \cdot 12 \mathrm{~g} / \mathrm{mol}=0.42 \mathrm{~g} .
$$

$$
v(\mathrm{~S})=v\left(\mathrm{SO}_{2}\right) ; \quad v\left(\mathrm{SO}_{2}\right)=0.07 \mathrm{~mol} ; \quad \mathrm{m}(\mathrm{~S})=2.24 \mathrm{~g} .
$$

$$
\mathrm{m}(\mathrm{C})+\mathrm{m}(\mathrm{~S})=0.42 \mathrm{~g}+2.24 \mathrm{~g}=2.66 \mathrm{~g} . \quad 0 \text { is absent }(\mathrm{z}=0)
$$

$$
\mathrm{n}(\mathrm{C}): \mathrm{n}(\mathrm{~S})=v(\mathrm{C}): v(\mathrm{~S})=0.035: 0.07=1: 2
$$

Examples of solution of the tasks

5. In compound B, the mass percent of Hydrogen is 3.03%, and that of sulphur is 96.97%. Determine the formula of compound B if its relative molecular mass is 66 .
Given :

$$
\begin{aligned}
& \omega(H)=3.03 \% \\
& \omega(S)=96.97 \% \\
& M_{r}(B)=66 \\
& H_{x} S_{y}-?
\end{aligned}
$$

$$
\begin{aligned}
n(H)=\frac{0.0303 \cdot 66}{1} & =2 \quad n(S)=\frac{0.9679 \cdot 66}{32}=2 \\
x & =2 ; y=2
\end{aligned}
$$

Answer: $\mathrm{H}_{2} \mathrm{~S}_{2}$

Examples of solution of the tasks

6. Calculate the mass of Carbon contained in 4.4 g of carbon (IV) oxide.

Given :
$\mathrm{m}\left(\mathrm{CO}_{2}\right)=4.4 \mathrm{~g}$

Solution:

$$
\begin{gathered}
\omega(\mathrm{C})=\frac{\mathrm{n}(\mathrm{C}) \cdot \mathrm{A}_{\mathrm{r}}(\mathrm{C})}{\mathrm{M}_{\mathrm{r}}\left(\mathrm{CO}_{2}\right)} \quad \omega(\mathrm{C})=\frac{m(\mathrm{C})}{\mathrm{m}\left(\mathrm{CO}_{2}\right)} \\
\frac{\mathrm{n}(\mathrm{C}) \cdot \mathrm{A}_{\mathrm{r}}(\mathrm{C})}{\mathrm{M}_{\mathrm{r}}\left(\mathrm{CO}_{2}\right)}=\frac{m(\mathrm{C})}{\mathrm{m}\left(\mathrm{CO}_{2}\right)}
\end{gathered}
$$

$$
\mathrm{m}(\mathrm{C})=\frac{\mathrm{n}(\mathrm{C}) \cdot \mathrm{A}_{\mathrm{r}}(\mathrm{C}) \cdot \mathrm{m}\left(\mathrm{CO}_{2}\right)}{\mathrm{M}_{\mathrm{r}}\left(\mathrm{CO}_{2}\right)}=\frac{1 \times 12 \times 4,4 \mathrm{~g}}{44}=1.2 \mathrm{~g}
$$

7. At roasting crystal hydrate composition $\mathrm{Na}_{2} \mathrm{SO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$, its mass decreased by 50%. Set the formula of the crystal hydrate.
Given :
Solution:
$\omega\left(\mathrm{H}_{2} \mathrm{O}\right)=50 \%$
$\mathrm{Na}_{2} \mathrm{SO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}-$?

$$
\omega\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot \mathrm{M}_{\mathrm{r}}\left(\mathrm{H}_{2} \mathrm{O}\right)}{\mathrm{M}_{\mathrm{r}}\left(\mathrm{Na}_{2} \mathrm{SO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}\right)}
$$

$$
\mathrm{M}_{\mathrm{r}}\left(\mathrm{Na}_{2} \mathrm{SO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}\right)=\frac{\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot \mathrm{M}_{\mathrm{r}}\left(\mathrm{H}_{2} \mathrm{O}\right)}{\omega\left(\mathrm{H}_{2} \mathrm{O}\right)}
$$

$$
\mathrm{M}_{\mathrm{r}}\left(\mathrm{Na}_{2} \mathrm{SO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}\right)=2 \cdot 23+32+3 \cdot 16+x \cdot 18=126+18 x
$$

$$
126+18 x=\frac{x \cdot 18}{0.5}
$$

$$
x=7
$$

Anser: $\mathrm{Na}_{2} \mathrm{SO}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
8. The sample of table salt (the main component of NaCl) contains 60% Chlorine. Calculate the mass percent of impurities in the salt.
Given :
$\omega(\mathrm{Cl})=60 \%$
ω (impurities) - ? Solution:
Let's admit m (sample) $=100 \mathrm{~g}$

$$
\begin{aligned}
& v(\mathrm{Cl})=\frac{\mathrm{m}(\mathrm{Cl})}{\mathrm{A}_{\mathrm{r}}(\mathrm{Cl})}=\frac{60 \mathrm{~g}}{35.5 \mathrm{~g} / \mathrm{mol}}=1.7 \mathrm{~mol} \\
& v(\mathrm{Na})=v(\mathrm{Cl})=1.7 \mathrm{~mol}
\end{aligned}
$$

$$
\mathrm{m}(\mathrm{Na})=v(\mathrm{Na}) \cdot \mathrm{A}_{\mathrm{r}}(\mathrm{Na})=1.7 \mathrm{~mol} \cdot 23 \mathrm{~g} / \mathrm{mol}=39.1 \mathrm{~g}
$$

$$
\mathrm{m}(\mathrm{NaCl})=\mathrm{m}(\mathrm{Na})+\mathrm{m}(\mathrm{Cl})=39.1 \mathrm{~g}+60 \mathrm{~g}=99.1 \mathrm{~g}
$$

$$
\mathrm{m}(\text { sample })=\mathrm{m}(\mathrm{NaCl})+\mathrm{m} \text { (impurities })
$$

$$
\mathrm{m}(\text { impurities })=\mathrm{m}(\text { sample })-\mathrm{m}(\mathrm{NaCl})=100 \mathrm{~g}-99.1 \mathrm{~g}=0.9 \mathrm{~g}
$$

$$
\omega(\text { impurities })=\frac{\mathrm{m}(\text { impurities })}{\mathrm{m}(\text { sample })}=\frac{0.9 \mathrm{~g}}{100 \mathrm{~g}}=0.009
$$

Answer: 0.009 or 0,9\%

$$
\begin{aligned}
& \text { Thank } \\
& \text { you for } \\
& \text { attention! }
\end{aligned}
$$

