Classes and nomenclature of inorganic compounds

Atoms and Ions

An **atom** is smallest neutral particle of matter characterizes an element.

An **ion** is an electrically charged species consisting of a single atom or a group of atoms. It is formed when a neutral atom or a group of atoms either gains or loses electrons.

A positive ion, called a cation (pronounced cat' eye on).

For example cations Na+, Mg²⁺.

If one of the electrons from the sodium atom is lost, there will be eleven positive charges but only ten negative charges. This gives an ion with a net positive one (+1) charge:

$${\rm Na^0-1}\bar{e} \rightarrow {\rm Na^+}$$

Neutral sodium atom sodium ion

Some atoms lose more that one electron.

We usually represent this process as follows.

For example, a magnesium atom loses two electrons to form a 2+ cation:

$$Mg^0 - 2\bar{e} \rightarrow Mg^{2+}$$

When electrons are gained by a neutral atom, an ion with a negative charge is formed.

A negative charged ion is called **an anion**.

An example of an atom that forms a 1 -anion is the chlorine atom:

$$Cl^0 + 1\bar{e} \rightarrow Cl^-$$

neutral chlorine atom chloride ion

Some atoms can add two electrons to form 2 – anions.

$$S^0 + 2\bar{e} \rightarrow S^{2-}$$
 sulphide ion

Now we will describe how to name compounds in each of those classes in the next several examples.

- 1. The cation is always named first and the anion second.
- 2. A simple cation (obtained from a single atom) takes its name from the name of the element. For example, Na⁺ is called sodium in the names of compounds containing this ion.
- 3. A simple anion is named by taking the first part of the element name and adding **ide**. Thus Cl⁻ ion is called **chloride**.

Cation	Name	Anion	Name
H ⁺	hydrogen	H ⁻	hydride
Na ⁺	sodium	F ⁻	fluoride
K ⁺	potassium	Cl ⁻	chloride
Mg ²⁺	magnesium	Br ⁻	bromide
Ca ²⁺	calcium	I -	iodide
Fe ²⁺	iron (II)	B ³⁻	boride
Fe ³⁺	iron (III)	N ³⁻	nitride
Al ³⁺	aluminum	O ²⁻	oxide
Ag ⁺	silver	S ²⁻	sulphide

10/2/2020 7

Naming binary covalent compounds

Formula	Name			
	Using prefixes	Stock system		
BCl ₃	boron trichloride	boron (III) chloride		
NO	nitrogen oxide	nitrogen (II) oxide		
PbO ₂	lead dioxide	lead (IV) oxide		
N_2O_5	dinitrogen pentoxide	nitrogen (V) oxide		
PCl ₅	phosphorus pentachloride	phosphorus (V) chloride		

OXIDES

Oxides are binary compounds of an element or radical with oxygen in the oxidation state of -2.

Highest oxides of elements of III period

- 1	Ш	III	IV	V	VI	VII
Na ₂ O	MgO	Al_2O_3	SiO ₂	P_2O_5	SO_3	Cl ₂ O ₇
Sodium oxide	Magnesium oxide	Aluminium oxide	Silicon dioxide	Phosphorus (V) oxide	Sulphur (VI) oxide	Chlorine (VII) oxide
Strong basic	Basic	Amphoteric	Slightly acidic	Acidic	Strong acidic	Very strong acidic

Over the period from the left to the right:

Metallic properties of elements are decreasing

Basic properties of oxides are decreasing

Acidic properties of oxides are increasing

Hydroxides of elements of III period

I	II	III	IV	V	VI	VII
NaOH	$Mg(OH)_2$	Al(OH) ₃	H ₂ SiO ₃	H ₃ PO ₄	H ₂ SO ₄	HClO ₄
Sodium hydroxide	Magnesium hydroxide	Aluminium hydroxide	Silicic acid	Orthophos- phoric acid	Sulphuric acid	Perchloric acid
Strong basic	Basic	Amphoteric	Slightly acidic	Acidic	Strong acidic	Very strong acidic

In case the element forms several oxides, acidic properties of oxide are increasing with the increasing of oxidation state of the element. Basic properties decrease accordingly:

$$^{+2}$$
 $^{+3}$ $^{+6}$ CrO $^{Cr}_{2}O_{3}$ $^{CrO}_{3}$ Amphoteric Acidic

Double oxides contain an element in two oxidation states:

Fe₃O₄ magnetite, iron (II) iron (III) oxide FeO·Fe₂O₃

Polymeric oxides:

$$(H_2O)_n$$
 $(P_2O_3)_n$

Peroxides are complex substances, consisting from two elements, one of which oxygen in the oxidation state of -1.

$$H_2O_2$$
, BaO_2

Bases and acids dissociate differently depending on the nature of molecule bonds:

Bases

Bases are electrolytes, which dissociate in aqueous solution with the formation OH⁻.

The acidity of the base is the number of -OH groups formed during dissociation.

Bases are divided:

Monoacidic bases

NaOH – sodium hydroxide, KOH – potassium hydroxide

Diacidic bases

 $Ba(OH)_2$ – barium hydroxide, $Fe(OH)_2$ – iron (II) hydroxide

Triacidic bases

 $Al(OH)_3$ – aluminium hydroxide, $Fe(OH)_3$ – iron (III) hydroxide

Alkalis are bases good soluble in water:

LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH)₂, Sr(OH)₂, Ba(OH)₂.

Acids

Acids are electrolytes, which dissociate in aqueous solution to form H⁺ and acid residue.

Binary Acids

They are named by a combination of the prefix "hydro" and nonmetal name modified to have an "ic" ending.

HF hydrofluoric acid

HCl hydrochloric acid

HBr hydrobromic acid

HI *hydro*iodic acid

H₂S *hydro*sulphuric acid

Oxoacids

Formula of acid	Name of acid	Formula of salt	Name of salt
H ₂ SO ₄	sulphur ic acid	Na ₂ SO ₄	sodium sulph ate
H_2SO_3	sulphur ous acid	$Al_2(SO_3)_3$	aluminium sulph ite
H ₂ S	hydrosulphur ic	$(NH_4)_2S$	ammonium sulph ide
HNO ₃	nitr ic acid	$Ba(NO_3)_2$	barium nitr ate
HNO ₂	nitr ous acid	$Fe(NO_2)_2$	iron(II) nitr ite
H_2CO_3	carbon ic acid	CaCO ₃	calcium carbon ate
H ₃ PO ₄	(ortho) phosphor ic acid	Na ₃ PO ₄	sodium phosph ate
H_3BO_3	(ortho) bor ic acid	Na ₃ BO ₃	sodium orthobor ate
HBO ₂	(meta) bor ic acid	NaBO ₂	sodium metabor ate
HClO ₄	perchloric acid	NH ₄ ClO ₄	ammonium per chlor ate
HClO ₃	chlor ic acid	NaClO ₃	sodium chlor ate
HClO ₂	chlor ous acid	KClO ₂	potassium chlor ite
HCIO	hypochlorous acid	NaClO	sodium hypo chlor ite
HCl	hydrochlor ic acid	CuCl ₂	copper(II) chlor ide

Note: An **ortho acid** is an oxoacid containing the maximum number of OH groups possible.

A **meta acid** is formed by the elimination of H₂O from the ortho acid.

$$H_3AIO_3 - H_2O \rightarrow HAIO_2$$
 metaluminic acid

When 2H₂SO₄ less one H₂O then forms poly-form which is called **disulphuric** acid:

$$2H_2SO_4 - H_2O \rightarrow H_2S_2O_7$$

By the number of hydrogen cations acids are divided into: monoprotic, diprotic and triprotic.

Monoprotic acides

HCl – hydrochlor**ic** acid CH₃COO**H** – acetic acid

HCN – hydrocyanic acid

Diprotic acides

H₂SO₄ – sulphuric acid

H₂CO₃ – carbonic acid

H₂CrO₄ – chromic acid

H₂Cr₂O₇ – dichromic acid

Triprotic acides

 H_3PO_4 – phosphoric acid H_3AsO_4 – ortho arsenicic acid

 H_3 AsO₃ – ortho arsenous acid

18

Salts

Salts are electrolytes which dissociate by cations of metal and anions of the acidic moiety.

Salts are ionic compounds in which hydrogen atoms of acids are replaced by metal ions.

All the salts divided into three parts: **means**, **acidic** and **basic**.

The **means salts** are product of complete replacement of hydrogen atoms of acids by the metal or ammonium ion (NH_4^+) .

Acidic salts are product of partial replacement of hydrogen atoms of polyprotic acids by metal.

Basic salts are product of partial replacement of the hydroxyl group of polyacidic base by acidic moiety.

Salts					
Means	Acidic	Basic			
$H_2SO_4 \rightarrow Na_2SO_4$ sodium sulphate	$H_2CO_3 \rightarrow NaHCO_3$ sodium hydrogen carbon ate	$Al(OH)_3 \rightarrow AlOHCl_2$ aluminium hydroxo chlor ide			
$H_2CO_3 \rightarrow CaCO_3$ calcium carbon ate	$H_3PO_4 \rightarrow Na_2HPO_4$ sodium hydrogen phosph ate	$Cu(OH)_2 \rightarrow (CuOH)_2CO_3$ copper hydroxo carbon ate			
$H_2CrO_4 \rightarrow Fe_2(CrO_4)_3$ iron (III) chromate	$H_3PO_4 \rightarrow Ca(H_2PO_4)_2$ calcium dihydrogen phosph ate				

Cation	Bromide Br	Carbonate	Acetate CH ₃ COO ⁻	Phosphate PO_4^{3-}	NO ₃ -
Hydrogen, H ⁺	HBr	HCO ₃ ·	CH ₃ COOH	H ₃ PO ₄	HNO ₃
Ammonium, NH ₄ ⁺	NH ₄ Br	NH ₄ HCO ₃	CH ₃ COONH ₄	(NH ₄) ₃ PO ₄	NH ₄ NO ₃
Calcium, Ca ²⁺	CaBr ₂	Ca(HCO ₃) ₂	Ca(CH ₃ COO) ₂	Ca ₃ (PO ₄) ₂	Ca(NO ₃) ₂
Aluminum, Al ³⁺	AlBr ₃	Al(HCO ₃) ₃	Al(CH ₃ COO) ₃	AIPO ₄	Al(NO ₃) ₃
Sodium, Na ⁺	NaBr	NaHCO ₃	CH ₃ COONa	Na ₃ PO ₄	NaNO ₃
Iron (III) , Fe ³⁺	FeBr ₃	Fe(HCO ₃) ₃	Fe(CH ₃ COO) ₃	FePO ₄	Fe(NO ₃) ₃
Nickel (II), Ni ²⁺	NiBr ₂	Ni(HCO ₃) ₂	Ni(CH ₃ COO) ₂	Ni ₃ (PO ₄) ₂	Ni(NO ₃) ₂
Silver, Ag ⁺	AgBr	AgHCO ₃	CH ₃ COOAg	Ag ₃ PO ₄	AgNO ₃
10/2/2020					21

Acetate

Nitrate

Phosphate

Hydrogen

Anion