Classes and nomenclature of inorganic compounds

Substances

Atoms and Ions

An atom is smallest neutral particle of matter characterizes an element.

An ion is an electrically charged species consisting of a single atom or a group of atoms. It is formed when a neutral atom or a group of atoms either gains or loses electrons.

A positive ion, called a cation (pronounced cat' eye on).

For example cations $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}$.
If one of the electrons from the sodium atom is lost, there will be eleven positive charges but only ten negative charges. This gives an ion with a net positive one (+1) charge:

$$
\mathrm{Na}^{0}-1 \bar{e} \rightarrow \mathrm{Na}^{+}
$$

Neutral sodium atom sodium ion

Some atoms lose more that one electron.
We usually represent this process as follows.
For example, a magnesium atom loses two electrons to form a 2+ cation:

$$
\mathrm{Mg}^{0}-2 \bar{e} \rightarrow \mathrm{Mg}^{2+}
$$

When electrons are gained by a neutral atom, an ion with a negative charge is formed.

A negative charged ion is called an anion.
An example of an atom that forms a 1 - anion is the chlorine atom:

$$
\begin{gathered}
\mathrm{Cl}^{0}+1 \bar{e} \rightarrow \mathrm{Cl}^{-} \\
\text {neutral chlorine atom } \\
\text { chloride ion }
\end{gathered}
$$

Some atoms can add two electrons to form 2 - anions.

$$
\underset{\text { sulphur }}{\mathrm{S}^{0}+2 \bar{e}} \underset{\text { sulphide ion }}{\rightarrow}
$$

Now we will describe how to name compounds in each of those classes in the next several examples.

1. The cation is always named first and the anion second.
2. A simple cation (obtained from a single atom) takes its name from the name of the element. For example, Na^{+}is called sodium in the names of compounds containing this ion.
3. A simple anion is named by taking the first part of the element name and adding - ide. Thus Cl^{-}ion is called chloride.

Cation	Name	Anion	Name
H^{+}	hydrogen	H^{-}	hydride
Na^{+}	sodium	F^{-}	fluoride
K^{+}	potassium	Cl^{-}	chloride
Mg^{2+}	magnesium	Br^{-}	bromide
Ca^{2+}	calcium	I^{-}	iodide
Fe^{2+}	iron (II)	B^{3-}	boride
Fe^{3+}	iron (III)	N^{3-}	nitride
Al^{3+}	aluminum	O^{2-}	oxide
Ag^{+}	silver	S^{2-}	sulphide

Naming binary covalent compounds

Formula	Name	
	boron trichloride	Stock system
NO	nitrogen oxide	boron (III) chloride
PbO_{2}	lead dioxide	nitrogen (II) oxide
$\mathrm{N}_{2} \mathrm{O}_{5}$	dinitrogen pentoxide	nitrogen (V) oxide
PCl_{5}	phosphorus pentachloride	phosphorus (V) chloride

OXIDES

Oxides are binary compounds of an element or radical with oxygen in the oxidation state of -2 .

Highest oxides of elements of III period

I	II	III	IV	V	VI	VII
$\mathrm{Na}_{2} \mathrm{O}$	MgO	$\mathrm{Al}_{2} \mathrm{O}_{3}$	SiO_{2}	$\mathrm{P}_{2} \mathrm{O}_{5}$	SO_{3}	$\mathrm{Cl}_{2} \mathrm{O}_{7}$
Sodium oxide	Magnesium oxide	Aluminium oxide	Silicon dioxide	Phosphorus (V) oxide	Sulphur (VI) oxide	Chlorine (VII) oxide
Strong basic	Basic	Amphoteric	Slightly acidic	Acidic	Strong acidic	Very strong acidic

Over the period from the left to the right:
Metallic properties of elements are decreasing

Basic properties of oxides
Acidic properties of oxides
are decreasing
are increasing

Hydroxides of elements of III period

I	II	III	IV	V	VI	VII
NaOH	$\mathrm{Mg}(\mathrm{OH})_{2}$	$\mathrm{Al}(\mathrm{OH})_{3}$	$\mathrm{H}_{2} \mathrm{SiO}_{3}$	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	HClO_{4}
Sodium hydroxide	Magnesium hydroxide	Aluminium hydroxide	Silicic acid	Orthophos- phoric acid	Sulphuric acid	Perchloric acid
Strong basic	Basic	Amphoteric	Slightly acidic	Acidic	Strong acidic	Very strong acidic

In case the element forms several oxides, acidic properties of oxide are increasing with the increasing of oxidation state of the element. Basic properties decrease accordingly:

+2	+3	+6
CrO	$\mathrm{Cr}_{2} \mathrm{O}_{3}$	CrO_{3}
Basic	Amphoteric	Acidic

Double oxides contain an element in two oxidation states:
$\mathrm{Fe}_{3} \mathrm{O}_{4}$ magnetite, iron (II) iron (III) oxide $\mathrm{FeO} \cdot \mathrm{Fe}_{2} \mathrm{O}_{3}$
Polymeric oxides:

$$
\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}} \quad\left(\mathrm{P}_{2} \mathrm{O}_{3}\right)_{n}
$$

Peroxides are complex substances, consisting from two elements, one of which oxygen in the oxidation state of -1 .

$$
\mathrm{H}_{2} \mathrm{O}_{2}, \quad \mathrm{BaO}_{2}
$$

Bases and acids dissociate differently depending on the nature of molecule bonds:

Bases

Bases are electrolytes, which dissociate in aqueous solution with the formation OH^{-}.

The acidity of the base is the number of - OH groups formed during dissociation.

Bases are divided:

Monoacidic bases

NaOH - sodium hydroxide, KOH - potassium hydroxide

Diacidic bases

$\mathrm{Ba}(\mathrm{OH})_{2}$ - barium hydroxide, $\mathrm{Fe}(\mathrm{OH})_{2}$ - iron (II) hydroxide

Triacidic bases

$\mathrm{Al}(\mathrm{OH})_{3}$ - aluminium hydroxide, $\mathrm{Fe}(\mathrm{OH})_{3}$ - iron (III) hydroxide
Alkalis are bases good soluble in water:
$\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{KOH}, \mathrm{RbOH}, \mathrm{CsOH}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH})_{2}, \mathrm{Ba}(\mathrm{OH})_{2}$.
10/2/2020

Acids

Acids are electrolytes, which dissociate in aqueous solution to form H^{+}and acid residue.

Binary Acids

They are named by a combination of the prefix "hydro" and nonmetal name modified to have an "ic" ending.

HF hydrofluoric acid
HCl hydrochloric acid
HBr hydrobromic acid
HI hydroiodic acid
$\mathrm{H}_{2} \mathrm{~S}$ hydrosulphuric acid

Oxoacids

Formula of acid	Name of acid	Formula of salt	Name of salt
$\mathrm{H}_{2} \mathrm{SO}_{4}$	sulphuric acid	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	sodium sulphate
$\mathrm{H}_{2} \mathrm{SO}_{3}$	sulphurous acid	$\mathrm{Al}_{2}\left(\mathrm{SO}_{3}\right)_{3}$	luminium sulphite
$\mathrm{H}_{2} \mathrm{~S}$	hydrosulphuric	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$	ammonium sulphide
HNO_{3}	nitric acid	$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	barium nitrate
HNO_{2}	nitrous acid	$\mathrm{Fe}\left(\mathrm{NO}_{2}\right)_{2}$	lron(II) nitrite
$\mathrm{H}_{2} \mathrm{CO}_{3}$	carbonic acid	CaCO_{3}	calcium carbonate
$\mathrm{H}_{3} \mathrm{PO}_{4}$	(ortho) phosphoric acid	$\mathrm{Na}_{3} \mathrm{PO}_{4}$	sodium phosphate
$\mathrm{H}_{3} \mathrm{BO}_{3}$	(ortho) boric acid	$\mathrm{Na}_{3} \mathrm{BO}_{3}$	sodium orthoborate
HBO_{2}	(meta) boric acid	NaBO_{2}	sodium metaborate
HClO_{4}	perchloric acid	$\mathrm{NH}_{4} \mathrm{ClO}_{4}$	ammonium perchlorate
HClO_{3}	chloric acid	NaClO_{3}	sodium chlorate
HClO_{2}	chlorous acid	KClO_{2}	potassium chlorite
HClO	hypochlorous acid	NaClO_{3}	sodium hypochlorite
HCl	hydrochloric acid	CuCl_{2}	copper(II) chloride

Note: An ortho acid is an oxoacid containing the maximum number of OH groups possible.

A meta acid is formed by the elimination of $\mathrm{H}_{2} \mathrm{O}$ from the ortho acid.

$$
\mathrm{H}_{3} \mathrm{AlO}_{3}-\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HAlO}_{2} \text { metaluminic acid }
$$

When $2 \mathrm{H}_{2} \mathrm{SO}_{4}$ less one $\mathrm{H}_{2} \mathrm{O}$ then forms poly-form which is called disulphuric acid:

$$
2 \mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}
$$

By the number of hydrogen cations acids are divided into: monoprotic, diprotic and triprotic.

Monoprotic acides

HCl - hydrochloric acid
$\mathrm{CH}_{3} \mathrm{COOH}$ - acetic acid HCN - hydrocyanic acid

Diprotic acides $\mathrm{H}_{2} \mathrm{SO}_{4}$ - sulphuric acid $\mathrm{H}_{2} \mathrm{CO}_{3}$ - carbonic acid
 $\mathrm{H}_{2} \mathrm{CrO}_{4}$ - chromic acid
 $\mathrm{H}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ - dichromic acid

Triprotic acides
$\mathrm{H}_{3} \mathrm{PO}_{4}$ - phosphoric acid
$\mathrm{H}_{3} \mathrm{AsO}_{4}$ - ortho arsenicic acid
$\mathrm{H}_{3} \mathrm{AsO}_{3}$ - ortho arsenous acid

Salts

Salts are electrolytes which dissociate by cations of metal and anions of the acidic moiety.

Salts are ionic compounds in which hydrogen atoms of acids are replaced by metal ions.

All the salts divided into three parts: means, acidic and basic.

The means salts are product of complete replacement of hydrogen atoms of acids by the metal or ammonium ion $\left(\mathrm{NH}_{4}^{+}\right)$.

Acidic salts are product of partial replacement of hydrogen atoms of polyprotic acids by metal.

Basic salts are product of partial replacement of the hydroxyl group of polyacidic base by acidic moiety.

Salts

Means

Acidic

Basic

$\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4} \quad \mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{NaHCO}_{3} \quad \mathrm{Al}(\mathrm{OH})_{3} \rightarrow \mathrm{AlOHCl}_{2}$ sodium sulphate sodium hydrogen carbonate
$\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3} \quad \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{HPO}_{4} \quad \mathrm{Cu}(\mathrm{OH})_{2} \rightarrow(\mathrm{CuOH})_{2} \mathrm{CO}_{3}$
calcium carbonate
sodium hydrogen phosphate copper hydroxo carbonate
$\mathrm{H}_{2} \mathrm{CrO}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{CrO}_{4}\right)_{3} \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$
iron (III) chromate calcium dihydrogen phosphate

Anion
Cation
Hydrogen,

$+$ Bromide Br^{-}

Acetate	Phosphate
$\mathrm{CH}_{3} \mathrm{COO}^{-}$	$\mathbf{P O}_{4}{ }^{3-}$

Acetate	Phosphate
$\mathrm{CH}_{3} \mathrm{COO}^{-}$	$\mathbf{P O}_{4}{ }^{3-}$

Acetate	Phosphate
$\mathrm{CH}_{3} \mathrm{COO}^{-}$	$\mathbf{P O}_{4}{ }^{3-}$

Nitrate
Hydrogen
Carbonate
$\mathrm{HCO}_{3}{ }^{-}$ $\mathbf{N O}_{3}{ }^{-}$
$\mathrm{HBr} \quad \mathrm{H}_{2} \mathrm{CO}_{3} \quad \mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{H}_{3} \mathrm{PO}_{4} \quad \mathrm{HNO}_{3}$
Ammonium, $\mathrm{NH}_{4}{ }^{+}$
Calcium, Ca^{2+}
Aluminum, Al^{3+}
Sodium, Na^{+} Iron (III),
Fe^{3+}
Nickel (II), Ni^{2+}
Silver, Ag^{+}
$\mathrm{NH}_{4} \mathrm{Br} \quad \mathrm{NH}_{4} \mathrm{HCO}_{3}$
$\mathrm{CH}_{3} \mathrm{COONH}_{4} \quad\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
$\mathrm{NH}_{4} \mathrm{NO}_{3}$
$\mathrm{CaBr}_{2} \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \quad \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
$\mathrm{AlBr}_{3} \quad \mathrm{Al}\left(\mathrm{HCO}_{3}\right)_{3} \quad \mathrm{Al}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3} \quad \mathrm{AlPO}_{4} \quad \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
$\begin{array}{llllll}\mathrm{NaBr} & \mathrm{NaHCO}_{3} & \mathrm{CH}_{3} \mathrm{COONa} & \mathrm{Na}_{3} \mathrm{PO}_{4} & \mathrm{NaNO}_{3}\end{array}$
$\mathrm{FeBr}_{3} \quad \mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{3}$
$\mathrm{NiBr} r_{2} \quad \mathrm{Ni}\left(\mathrm{HCO}_{3}\right)_{2}$
$\mathrm{Ni}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$
$\mathrm{Ni}_{3}\left(\mathrm{PO}_{4}\right)_{2} \quad \mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$

