

α то $\mu \varsigma$

Atomic Structure And The Periodic Table

"electron cloud"

95\% probability
of electron
confinement

Elements

The simplest form of matter

Atoms

The smallest piece of an element that contains all properties of that element

Timeline of Atomic Theory

Dalton's Model

- In the early 1800s, the English Chemist John Dalton performed a number of experiments that eventually led to the acceptance of the idea of atoms.

- This theory
became one of
the
foundations of modern
chemistry.

Components of an Atom

Nucleus
The center portion of an atom containing the protons and neutrons Protons

Positively charged atomic particles Neutrons

Uncharged atomic particles

The structure of the atom

The Ancient Greeks used to believe that everything was made up of very small particles. I did some experiments in 1808 that proved this and called these particles ATOMS:

NEUTRON neutral, same mass as proton ("1")

PROTON - positive, same mass as neutron ("1")

Subatomic Particles

- protons (p), charge +1 , mass $\approx 1 \mathrm{amu}$
- neutrons (n), charge 0 , mass $\approx 1 \mathrm{amu}$

The nucleus (plural, nuclei) is incredibly small:

$$
10000 \times \text { diameter of nucleus }=\text { diameter of atom }
$$

The nucleus does not change during any ordinary chemical reaction
(for a neutral atom)
> number of protons = number of electrons
$>$ atomic number (\mathbf{Z}) of the element: $\mathbf{Z}=\mathbf{p}$
$>$ mass number (A): $\mathbf{A}=\mathbf{p}+\mathbf{n}=\mathbf{Z}+\mathbf{n}$

Mass and atomic number

Particle	Relative Mass	Relative Charge
Proton	1	1
Neutron	1	0
Electron	0	-1

$$
\text { MASS NUMBER = number of protons }+ \text { number }
$$ of neutrons

PROTON NUMBER = number of protons (obviously)

- The absolute masses of atoms of elements is very small

$$
\begin{aligned}
& \operatorname{mass}(\mathrm{O})=2.667 \times 10^{-26} \mathrm{~kg} \\
& \operatorname{mass}(\mathrm{H})=1.674 \times 10^{-27} \mathrm{~kg} \\
& \operatorname{mass}(\mathrm{C})=1.993 \times 10^{-26} \mathrm{~kg}
\end{aligned}
$$

- To avoid using terms like 10^{-27} to describe the mass of atom, scientists have to define a much smaller unit of mass called the atomic mass unit, which is abbreviated amu

atomic mass unit
 $1 \mathrm{amu}=1.66054 \times 10^{-27} \mathrm{~kg}$

- It is the $1 / 12$ parts of mass of atom of an isotope of carbon ${ }^{12} \mathrm{C}$

Isotopes. Relative mass of atoms

Isotopes have the same atomic number but different mass numbers

The atomic masses that are listed in tables are weighted averages of these isotopic mixtures.

The average atomic mass of magnesium :
$(0.7899 \times 24)+(0.1000 \times 25)+(0.1101 \times 26)=24.305$

All three isotopes are present in all compounds of magnesium in the same proportions

Approximately 290 isotopes occur in nature

Average atomic mass

$\begin{gathered} 1.01 \\ \mathbf{H} \\ 1 \end{gathered}$		Average atomic mass
6.94	9.01	
$\underset{3}{\mathrm{Li}}$	Be_{4}	
22.99	24.31	
$\underset{11}{\mathrm{Na}}$	Mg	
39.10	40.08	44.96
$\underset{19}{\text { K }}$	Ca	$\underset{21}{\text { Sc }}$

- The average atomic mass give the proportion of each isotope by mass.
- For example, the periodic table lists an atomic mass of 6.94 for lithium.
- On average, 94% of lithium atoms are Li^{7} and 6% are Li${ }^{6}$.

Reactions inside and between atoms

- Most atoms in nature are found combined with other atoms into molecules.
- A molecule is a group of atoms that are chemically bonded together.

Methane molecule

Reactions between atoms

- A chemical reaction rearranges the same atoms into different molecules.
- Chemical reactions rearrange atoms into new molecules but do not change atoms into other kinds of atoms.

Chemical reaction

Hydrogen atom
Carbon atom

Oxygen atom

Methane
molecule

$\mathrm{CH}_{4}+2 \mathrm{O}_{2}$
:---:
CO_{2}

Reactions inside atoms

- A nuclear reaction is any process that changes the nucleus of an atom.
- A nuclear reaction can change atoms of one element into atoms of a different element.

Nuclear reaction

Proton
Neutron
Helium 4 nucleus
Lithium 7 nucleus

2 helium 4 nuclei

$$
\mathrm{He}^{4}+\mathrm{He}^{4}
$$

Lithium 7 nucleus

$=\quad \mathrm{Li}^{7}+$

Electrons and Quantum Theory

- Quantum physics is the branch of science that deals with extremely small systems such as an atom.
- A brilliant scientist, Neils Bohr is often called the father of quantum physics.
- Niels Bohr was the first person to put the clues together correctly and in 1913 proposed a theory that described the electrons in an atom.

Line Spectra of Excited Atoms

- Excited atoms emit light of only certain wavelengths
- The wavelengths of emitted light depend on the element.

Electrons and Quantum Theory

- Each individual color is called a spectral line because each color appears as a line in a spectrometer.
- A spectrometer is a device that spreads light into its different wavelengths, or colors.

Simple prism spectrometer

Spectral Lines

Hydrogen

Sodium

Helium

Neon

Mercury

Balmer's formula

- The first serious clue to an explanation of the atom was discovered in 1885 by Johann Balmer, a Swiss high school teacher.
- He showed that the wavelengths of the light given off by hydrogen atoms could be predicted by a mathematical formula (Balmer's formula).

The visible spectrum of hydrogen

The structure of the atom

- Electrons are outside the nucleus in the electron cloud.
- Because electrons are so fast and light, physicists tend to speak of the "electron cloud" rather than talk about the exact location of each electron.

Quantum states

- Every quantum state in the atom is identified by a unique combination of the four quantum numbers

Quantum Numbers (q.n.)

- principal (energetic) q.n., n
- orbital (azimuthal) q.n., ℓ
- magnetic q.n., m
- spin q.n., m_{s}

principal q.n. n

It can have any positive integer values in the exiting state of atom

$$
n=1,2,3,4 \ldots+\infty
$$

For the ground state of an atom (the most stable energetic states of an atom) $n=1,2,3,4,5,6,7$

- atoms have a series of energy levels called principal energy levels
- level is defined as a group of electrons with the same principal q.n.
- the energy increases as the value of n increases

Orbital q.n. ℓ

- It cannot be negative and it cannot be any large than $n-1$

$$
\ell=0,1,2,3, \ldots, n-1
$$

- In atom each principal energy level contains one or more types of orbitals called sublevel

magnetic q.n.

- Its value may be positive or negative, and may rang from $-\ell$ through zero to $+\ell$ in integral steps.

$$
m=-\ell, \ldots 0, \ldots+\ell
$$

- It does determine the orientation in space of the volume that can contain the electron

$$
\begin{gathered}
\ell=0(\mathrm{~s}) \quad \mathrm{m}=0 \quad \mathrm{~s}-\text { sublevel has only } 1 \text { orbital } \\
\ell=1(\mathrm{p}) \mathrm{m}=-1,0,+1 \quad \mathrm{p} \text {-sublevel has } 3 \text { orbitals } \\
\ell=2(\mathrm{~d}) \quad \mathrm{m}=-2,-1,0,+1,+2 \quad \mathrm{~d} \text {-sublevel has } 5 \text { orbitals }
\end{gathered}
$$

$$
\ell=3(\mathrm{f}) \quad \mathrm{m}=-3,-2,-1,0,+1,+2,+3 \quad \mathrm{f}-\text { sublevel has } 7 \text { orbitals }
$$

The number of the sublevels is equal to the number of energy level

The 1-st energy level

$$
\mathrm{n}=1 \ell=0(\mathrm{~s})
$$

The 2-nd energy level

$$
\begin{array}{ll}
\mathrm{n}=2 \quad \ell=0,1 & \ell=0(\mathrm{~s}) \\
& \ell=1(\mathrm{p})
\end{array}
$$

The 3-rd energy level

$$
\begin{aligned}
& \ell=0(\mathrm{~s}) \\
& \ell=1(\mathrm{p}) \\
& \ell=2(\mathrm{~d})
\end{aligned}
$$

$$
\mathrm{n}=3 \quad \ell=0,1,2 \quad \ell=1(\mathrm{p})
$$

The 4 energy level

$$
\begin{aligned}
& \ell=0(\mathrm{~s}) \\
& \ell=1(\mathrm{p}) \\
& \ell=2(\mathrm{~d}) \\
& \ell=3(\mathrm{f})
\end{aligned}
$$

- According to wave mechanical model electron is the particle from one hand and the wave from the other hand.
- It is impossible to know exactly both the location and the momentum of an electron in an atom at the same time. This fact is known as Heisenberg uncertainty principle.

Shapes of Orbitals

- Therefore, scientists describe the probable locations of electrons. These locations describe the orbital shapes.

spin q.n. m_{s}

- may have a value of $-1 / 2$ or $+1 / 2$ only.
- the spin value indicates that the electron is spinning on its axis in one direction or the opposite.
- we often represent spin with an arrow:

$$
\text { either } \uparrow \text { or } \downarrow
$$

- maximum of two electrons can occupy any given orbital in an atom (Pauli exclusion principle)

Electron Configurations of the Elements

The electronic configuration (formulae) of argon: $\mathrm{Ar} \underbrace{1 s^{2} 2 s^{2} 2 p^{6}}_{\mathrm{K}} 3 s^{2} 3 p^{6}$
If the energy level complete with electrons the capital letters can be used KLM..... The short electronic configuration (formulae) of argon:

$$
\mathrm{Ar} \mathrm{KL} 3 s^{2} 3 p^{6}
$$

K $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$

$$
\mathrm{Ar}
$$

The short electronic configuration (formulae) of potassium:

K $[\mathrm{Ar}] 4 s^{1}$

The symbols of inert gases (VIIIA group) can be used in the short electronic configuration

Task 1. Calculate the maximum numbers of electrons in electronic shells $4,5(n=4 ; 5)$ and subshells d- , f- ($l=2$; 3).

$$
\begin{aligned}
& \quad N=2 n^{2} \\
& \mathrm{n}=4 \quad N=2 \times 4^{2}=32 \quad \mathrm{n}=5 \quad N=2 \times 5^{2}=50 \\
& l=2(\mathrm{~d}) \quad 5 \text { orbitals } \times 2 \text { 2electrons }=10 \text { electrons } \\
& l=3(\mathrm{f}) \quad 7 \text { orbitals } \times 2 \text { electrons }=14 \text { electrons }
\end{aligned}
$$

The principle of maximum multiplicity - the Hund's rule. When orbital with identical energy is available, electrons occupying these singly rather than in pairs.

N $1 s^{2} 2 s^{2} 2 p^{3}$

Klechkovsky rules

sum $\boldsymbol{n}+\ell$
$1 s=1+0=1$
$2 s=2+0=2$

$$
2 \mathbf{p}=2+1=3
$$

$3 s=3+0=3$

$$
3 p=3+1=4 \quad 3 d=3+2=5
$$

$4 s=4+0=4$

$$
4 p=4+1=5 \quad 4 d=4+2=6
$$

1s 2s 2p 3s 3p 4s 3d 4p..........

Task 2. Write the electronic formula and orbital diagram of the sulfur atom in basic and excited states. Determine the number of protons and neutrons in the nucleus of its atom.

S $1 s^{2} 2 s^{2} 2 p^{6} \underline{3 s^{2} 3 p^{4} 3 d}$

Task 3. Draw the orbital (box) diagram of the valence electrons of chromium atom and copper atom.
${ }_{24} \mathrm{Cr} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 p^{6} 3 s^{2} 33{ }^{6} 3 d 4{ }^{6}{ }^{*}{ }^{8}$

Periodic Table of Elements

Elements

- Science has come along way since Aristotle's theory of Air, Water, Fire, and Earth.
- Scientists have identified 90 naturally occurring elements, and created about 28 others.

Dmitri Mendeleev (1834-1907)

Russian chemist

Credited as being the creator of the first version of the periodic table of elements
Arranged his periodic table according to atomic mass so that elements with similar properties were in the same group

Periodic Law

When the elements are arranged in order of increasing atomic number, there is a periodic repetition of their physical and chemical properties

Symbols

- All elements have their own unique symbol.
- It can consist of a single capital letter, or a capital letter and one or two lower case letters.

Copper

Classifying the Elements

- Three main classifications for the elements
- Metals
- Nonmetals
- Metalloids

The Structure of the Periodic Table

- Periods are the horizontal rows of the elements (7 periods)
- Groups are the vertical columns of the elements (8 groups) the main - group elements (subgroup A) only for s- and pelements
the transition elements (subgroup B) only for d- and f-elements
- There are four electronic families of the elements:
$s-, \quad p-, d-, f$ - in the periodic table.

Traditional families of elements

Example of electronic configuration

Sodium is the element of the period 3

$\mathrm{Na} 1 s^{2} 2 s^{2} 2 p^{6} \underline{3 s^{1}}$ on s-sublevel - IA group

The electrons in the outermost (highest) energy level of an atom are valence electrons

S-electronic family element
One valence electron

3s

Electron-grafic configuration (orbital (box) diagram) only for valence electrons

Task 1. Explain the similarity and the difference between chromium and sulphur.

S $1 s^{2} 2 s^{2} 2 p^{6} \underline{3 s^{2} 3 p}$
 $[A r] 4 s^{1} 3 d^{5}$

6 valence electrons
+6 o.d. in the compounds
$\mathrm{CrO}_{3} \mathrm{SO}_{3}$ are acidic oxides

Different valence electronic configuration
S - element of VIA group Cr - element of VIB group

Simple compounds:
Sulfur is typical nonmetal Chromium is typical metal

Elements of the same period have the same number of filled energy shells.

Task 2. Enter the group number and period of elements with numbers $35,41$.

At Number $=35$

Br Bromine

Group VIIA Period 4

At Number $=41$
Nb Niobium

Group VB Period 5

Task 3. The electronic configuration of

 anion E^{2-} is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$.Define the period, the group and the character of the chemical element.

$$
\begin{aligned}
& E^{2-} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \\
& E^{0} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}
\end{aligned}
$$

At Number $=16$

S Sulfur

Group VIA Period 3

Task 4. The electronic configuration of

 cation E^{2+} is $1 s^{2} 2 s^{2} 2 p^{6}$.Define the period, the group and the character of the chemical element.

$$
\begin{aligned}
& \mathrm{E}^{2+} 1 s^{2} 2 s^{2} 2 p^{6} \\
& \mathrm{E}^{0} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}
\end{aligned}
$$

At Number = 12
Mg Magnesium Group IIA Period 3

Atomic Properties

- Atomic Radius (size of atom)
- Ionization energy
- Electron affinity
- Electronegativity
- Metallic and nonmetallic character

Atomic Radius

- The sizes of atoms vary:

Atoms get large down a group Atoms get smaller from left to

Atomic

 radius right across a period| Element | Li | Be | B | C | N | O | F | Ne |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| r, nm | 0.155 | 0.113 | 0.091 | 0.077 | 0.074 | 0.066 | 0.064 | 0.030 |
| Element | Na | | | | | | | |
| r, nm | 0.189 | | | | | | | |

- The unit that has long been used to describe atomic size is the angstrom, \AA.
Appropriate SI units are nanometer (nm) or picometer ($\mathbf{p m}$).

$$
\begin{gathered}
1 \AA=1 \times 10^{-10} \mathrm{~m} \\
1 \mathrm{~nm}=1 \times 10^{-9} \mathrm{~m} \\
1 \mathrm{pm}=1 \times 10^{-12} \mathrm{~m}
\end{gathered}
$$

Atomic Radii Trend

- Trends within periods
- Generally decreases as you move left-toright across a period (row)
- Trends within groups
- Generally increases as you move down a group

An ion is an atom or a bonded group of atoms that has a positive or negative charge

Atomic Radii of Alkali Metal Elements and Ions;

When atoms lose electrons and form positively charged ions, they always become smaller

When atoms gain electrons and form negatively charged ions, they always become larger

Lose Electrons $\boldsymbol{\rightarrow}$ Smaller ionic radii

Atomic/lonic Radii

5A	6A		7A	
$\stackrel{(\mathrm{N})}{0.70} \underbrace{\mathrm{~N}^{3-}}_{1.71}$	$\begin{gathered} \text { © } \\ 0.66 \end{gathered}$	$\frac{\mathrm{O}^{2-}}{1.40}$	(E) 0.64	$\overbrace{1.36}$
	$\stackrel{(\mathrm{S}}{1.04}$	S^{2-}	(C1) 0.99	$\underbrace{\mathrm{Cl}^{-}}_{1.81}$
	Se) 1.17	Se^{2-}	$\stackrel{(8)}{\text { (}}$	
	$\xrightarrow[1.37]{\mathrm{Te}}$	Te_{2}^{2-}	1.3	$\underbrace{I^{-}}_{2.16}$

Ionization Energy (potential)

- Ionization energy (I) is the energy that the gaseous atom must absorb in order that its most loosely held electron may become completely separated from it.
It is the energy required to remove an electron from an individual atom

> For example

$$
\begin{aligned}
\mathrm{Mg}(\mathrm{~g}) & \rightarrow \mathrm{Mg}^{+}(\mathrm{g})+\overline{\mathrm{e}} \quad I_{1}=7.65 \mathrm{eV} / \text { atom }(\mathrm{kJ} / \mathrm{mol}) \\
\mathrm{Mg}^{+}(\mathrm{g}) & \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+\overline{\mathrm{e}} \quad I_{2}=15.04 \mathrm{eV} / \text { atom }(\mathrm{kJ} / \mathrm{mol})
\end{aligned}
$$

- Metals have relatively low I. Relatively small amount of energy is required to remove an electron from a typical metal.
- I tends to decrease in going from the top to the bottom of a group
- I tends to increase from left to right

Ionization energy across a given period

			First lonization energy increases					
	$\begin{gathered} H \\ 1312.0 \end{gathered}$						$\begin{gathered} \mathrm{H} \\ 1312.0 \end{gathered}$	$\begin{gathered} \mathrm{He} \\ 2372.3 \end{gathered}$
	$\begin{array}{ll} 11 \\ 520.2 \end{array}$	$\begin{gathered} \text { Be } \\ 899.4 \end{gathered}$	$\begin{gathered} 8 \\ 800.6 \end{gathered}$	C	$\begin{gathered} \mathrm{N} \\ 1402.3 \end{gathered}$	$\begin{aligned} & 0 \\ & 1313.9 \end{aligned}$	1681.0	$\begin{aligned} & \text { Ne } \\ & 2080.6 \end{aligned}$
	$\begin{gathered} \mathrm{Na} \\ 495.8 \end{gathered}$	$\begin{aligned} & \mathrm{Mg} \\ & 737.7 \end{aligned}$	$\begin{aligned} & \text { AI } \\ & 377.6 \end{aligned}$	$\begin{gathered} 51 \\ 786.4 \end{gathered}$	$\begin{gathered} P \\ 1011: 7 \end{gathered}$	S	$\begin{gathered} \text { CI } \\ 1251.1 \end{gathered}$	$\begin{gathered} \text { Ar } \\ 1520.5 \end{gathered}$
	$\begin{gathered} K \\ k 18.8 \end{gathered}$	$\begin{gathered} \mathrm{Ca} \\ 589.8 \end{gathered}$	$\begin{gathered} 6 \mathrm{Ga} \\ 578.8 \end{gathered}$	$\begin{aligned} & \mathrm{Ge} \\ & 762.1 \end{aligned}$	$\begin{aligned} & \text { As } \\ & 9947 \end{aligned}$	$\begin{aligned} & \text { Se } \\ & 940.9 \end{aligned}$	$\begin{aligned} & \mathrm{Br}_{1} \\ & 1139.9 \end{aligned}$	$\begin{gathered} \mathrm{Kr} \\ 1360.2 \end{gathered}$
	$\begin{aligned} & \mathrm{Rb} \\ & 403.0 \end{aligned}$	$\begin{aligned} & \mathrm{Sr} \\ & 549.5 \end{aligned}$	$\begin{aligned} & \ln \\ & 558.3 \end{aligned}$	$\begin{aligned} & \mathrm{Sn} \\ & 708.6 \end{aligned}$	$\begin{aligned} & \mathrm{Sb} \\ & 833.7 \end{aligned}$	$\begin{aligned} & \mathrm{Te} \\ & 8692 \end{aligned}$	1008.4	$\begin{aligned} & \mathrm{Xe}_{\mathrm{e}} \\ & 1170.4 \end{aligned}$
	$\begin{aligned} & \text { Cs } \\ & 375 \text { I } \end{aligned}$	$\begin{aligned} & \mathrm{Ba} \\ & 508.1 \end{aligned}$	511	$\begin{aligned} & \mathrm{Pb} \\ & 722.9 \end{aligned}$	$\begin{aligned} & 8 i \\ & 710.6 \end{aligned}$	$\begin{aligned} & P_{0} \\ & 822 \end{aligned}$	At	$\begin{gathered} \mathrm{Rn} \\ 1047.8 \end{gathered}$
	Fr	$\begin{aligned} & \mathrm{Ra} \\ & 514.6 \end{aligned}$						

Electron Affinity

- Electron affinity $(\boldsymbol{E A})$ is the energy what can be spent to change a neutral atom into a negative charge ion

For example

$$
\mathrm{Cl}^{0}(\mathrm{~g})+\overline{\mathrm{e}} \rightarrow \mathrm{Cl}^{-}(\mathrm{g}) \quad \mathrm{EA}=-3.615 \mathrm{eV} / \text { atom }
$$

- Low (very negative) value of EA is a characteristic of active nonmetals (acidic elements)
- EA tends to increase from left to right across a given period

EA

- EA tends to decrease in going from the top to the bottom of a group

Electronegativity

- Electronegativity (χ) is the ability of an atom to lose or gain an electron.
- Electronegativity is related to ionization energy(I) and electron affinity(E)
- The most widely used electronegativity scale was devised by Linus Pauling

$$
\chi=\mathbf{I}+\mathbf{E}
$$

- As a rule,
metals have electronegativities <2;
metalloids ≈ 2;
nonmetals (acidic elements) > 2 .

Electronegativities of some elements

	I	II	III	IV	V	VI	VII	VIII		
I	$\begin{gathered} \mathbf{H} \\ 2.1 \end{gathered}$									
II	$\begin{gathered} \mathbf{L i} \\ 1.0 \end{gathered}$	$\begin{aligned} & \hline \mathbf{B e} \\ & 1.5 \end{aligned}$	$\begin{gathered} \hline \mathbf{B} \\ 2.0 \end{gathered}$	$\begin{gathered} \mathbf{C} \\ 2.5 \end{gathered}$	$\begin{gathered} \mathbf{N} \\ 3.0 \end{gathered}$	$\begin{gathered} \hline \mathbf{O} \\ 3.5 \end{gathered}$	$\begin{gathered} \hline \mathbf{F} \\ 4.0 \end{gathered}$			
III	$\begin{aligned} & \hline \mathbf{N a} \\ & 09 \end{aligned}$	$\begin{array}{r} \hline \mathbf{M g} \\ 1.2 \end{array}$	$\begin{aligned} & \hline \mathbf{A l} \\ & 1.5 \end{aligned}$	$\begin{gathered} \mathbf{S i} \\ 1.8 \end{gathered}$	$\begin{gathered} \mathbf{P} \\ 2.1 \end{gathered}$	$\begin{gathered} \mathbf{S} \\ 2.5 \end{gathered}$	$\begin{aligned} & \hline \mathbf{C l} \\ & 3.0 \end{aligned}$			
IV	$\begin{gathered} \mathbf{K} \\ 0.8 \end{gathered}$	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	$\begin{gathered} \hline \mathbf{M n} \\ 1.5 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{F e} \\ & 1.8 \end{aligned}$	$\begin{aligned} & \hline \text { Co } \\ & 1.8 \end{aligned}$	$\begin{aligned} & \mathbf{N i} \\ & 1.8 \end{aligned}$
	$\begin{aligned} & \mathrm{Cu} \\ & 1.9 \end{aligned}$	$\begin{aligned} & \mathbf{Z n} \\ & 1.6 \end{aligned}$	$\begin{gathered} \hline \mathbf{G a} \\ 1.6 \\ \hline \end{gathered}$	$\begin{aligned} & \mathbf{G e} \\ & 1.8 \end{aligned}$	$\begin{aligned} & \hline \mathbf{A s} \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline \mathbf{S e} \\ & 2.4 \end{aligned}$	$\begin{aligned} & \hline \mathbf{B r} \\ & 2.8 \end{aligned}$			
	$\begin{aligned} & \hline \mathbf{R b} \\ & 0.8 \end{aligned}$	$\begin{gathered} \hline \mathbf{S r} \\ 1.0 \end{gathered}$	$\begin{gathered} \mathbf{Y} \\ 1.2 \end{gathered}$	$\begin{aligned} & \hline \mathbf{Z r} \\ & 1.4 \end{aligned}$	$\begin{gathered} \mathrm{Nb} \\ 1.6 \end{gathered}$	$\begin{gathered} \hline \mathbf{M o} \\ 1.8 \end{gathered}$	$\begin{gathered} \mathrm{Tc} \\ 1.9 \end{gathered}$	$\begin{aligned} & \hline \mathbf{R u} \\ & 2.2 \end{aligned}$	Rh 2.2	$\begin{aligned} & \hline \text { Pd } \\ & 2.2 \end{aligned}$
V	$\begin{array}{r} \mathbf{A g} \\ 1.9 \end{array}$	$\begin{aligned} & \hline \mathbf{C d} \\ & 1.7 \end{aligned}$	$\begin{aligned} & \text { In } \\ & 1.7 \end{aligned}$	$\begin{aligned} & \text { Sn } \\ & 1.8 \end{aligned}$	$\begin{aligned} & \mathbf{S b} \\ & 1.9 \end{aligned}$	$\begin{gathered} \mathrm{Te} \\ 2.1 \end{gathered}$	$\begin{gathered} \mathbf{I} \\ 2.5 \end{gathered}$			
	$\begin{aligned} & \hline \mathrm{Cs} \\ & 0.7 \end{aligned}$	$\begin{gathered} \hline \mathbf{B a} \\ 0.9 \end{gathered}$	$\begin{gathered} \text { La } \\ 1.1 \end{gathered}$	$\begin{aligned} & \mathbf{H f} \\ & 1.3 \end{aligned}$	$\begin{aligned} & \mathrm{Ta} \\ & 1.5 \end{aligned}$	$\begin{gathered} \hline \mathbf{W} \\ 1.7 \end{gathered}$	$\begin{aligned} & \hline \mathbf{R e} \\ & 1.9 \end{aligned}$	$\begin{gathered} \hline \mathbf{O s} \\ 2.2 \end{gathered}$	$\begin{gathered} \hline \mathbf{I r} \\ 2.2 \end{gathered}$	$\begin{gathered} \hline \mathbf{P t} \\ 2.2 \end{gathered}$
VI	$\begin{aligned} & \hline \mathbf{A u} \\ & 2.4 \end{aligned}$	$\begin{gathered} \mathbf{H g} \\ 1.9 \end{gathered}$	$\begin{gathered} \mathbf{T i} \\ 1.8 \end{gathered}$	$\begin{aligned} & \hline \mathbf{P b} \\ & 1.8 \end{aligned}$	$\begin{gathered} \mathbf{B i} \\ 1.9 \end{gathered}$	$\begin{aligned} & \hline \text { Po } \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline \mathbf{A t} \\ & 2.2 \end{aligned}$			
VII	$\begin{aligned} & \hline \mathbf{F r} \\ & 0.7 \end{aligned}$	$\begin{aligned} & \hline \mathbf{R a} \\ & 0.9 \end{aligned}$	$\begin{aligned} & \hline \mathbf{A c} \\ & 1.1 \end{aligned}$							

In Summary

